Skip to contents

All functions

Accuracy()
accuracy of oblique decision random forest
ODBT()
Classification and Regression using the Ensemble of ODT-based Boosting Trees
ODRF()
Classification and Regression using Oblique Decision Random Forest
ODT()
Classification and Regression with Oblique Decision Tree
PPO()
Projection Pursuit Optimization
RandRot()
Samples a p x p uniformly random rotation matrix
RotMatMake()
Create rotation matrix used to determine the linear combination of features.
RotMatPPO()
Create a Projection Matrix: RotMatPPO
RotMatRF()
Create a Projection Matrix: Random Forest (RF)
RotMatRand()
Random Rotation Matrix
VarImp()
Extract variable importance measure
as.party(<ODT>)
ODT as party
best.cut.node()
find best splitting variable and node
defaults()
Default values passed to RotMat*
online(<ODRF>)
using new training data to update an existing ODRF.
online(<ODT>)
using new training data to update an existing ODT.
plot(<Accuracy>)
plot method for Accuracy objects
plot(<ODT>)
to plot an oblique decision tree
plot(<VarImp>)
Variable Importance Plot
plot(<prune.ODT>)
to plot pruned oblique decision tree
plot_ODT_depth()
plot oblique decision tree depth
predict(<ODRF>)
predict based on an ODRF object
predict(<ODT>)
making predict based on ODT objects
print(<ODRF>)
print ODRF
print(<ODT>)
print ODT result
prune(<ODRF>)
Pruning of class ODRF.
prune(<ODT>)
pruning of class ODT