
Package index
-
Accuracy() - accuracy of oblique decision random forest
-
ODBT() - Classification and Regression using the Ensemble of ODT-based Boosting Trees
-
ODRF() - Classification and Regression using Oblique Decision Random Forest
-
ODT() - Classification and Regression with Oblique Decision Tree
-
PPO() - Projection Pursuit Optimization
-
RandRot() - Samples a p x p uniformly random rotation matrix
-
RotMatMake() - Create rotation matrix used to determine the linear combination of features.
-
RotMatPPO() - Create a Projection Matrix: RotMatPPO
-
RotMatRF() - Create a Projection Matrix: Random Forest (RF)
-
RotMatRand() - Random Rotation Matrix
-
VarImp() - Extract variable importance measure
-
as.party(<ODT>) ODTasparty
-
best.cut.node() - find best splitting variable and node
-
defaults() - Default values passed to RotMat*
-
online(<ODRF>) - using new training data to update an existing
ODRF.
-
online(<ODT>) - using new training data to update an existing
ODT.
-
plot(<Accuracy>) - plot method for
Accuracyobjects
-
plot(<ODT>) - to plot an oblique decision tree
-
plot(<VarImp>) - Variable Importance Plot
-
plot(<prune.ODT>) - to plot pruned oblique decision tree
-
plot_ODT_depth() - plot oblique decision tree depth
-
predict(<ODRF>) - predict based on an ODRF object
-
predict(<ODT>) - making predict based on ODT objects
-
print(<ODRF>) - print ODRF
-
print(<ODT>) - print ODT result
-
prune(<ODRF>) - Pruning of class
ODRF.
-
prune(<ODT>) - pruning of class
ODT