Package index
-
Accuracy()
- accuracy of oblique decision random forest
-
ODBT()
- Classification and Regression using the Ensemble of ODT-based Boosting Trees
-
ODRF()
- Classification and Regression using Oblique Decision Random Forest
-
ODT()
- Classification and Regression with Oblique Decision Tree
-
PPO()
- Projection Pursuit Optimization
-
RandRot()
- Samples a p x p uniformly random rotation matrix
-
RotMatMake()
- Create rotation matrix used to determine the linear combination of features.
-
RotMatPPO()
- Create a Projection Matrix: RotMatPPO
-
RotMatRF()
- Create a Projection Matrix: Random Forest (RF)
-
RotMatRand()
- Random Rotation Matrix
-
VarImp()
- Extract variable importance measure
-
as.party(<ODT>)
ODT
asparty
-
best.cut.node()
- find best splitting variable and node
-
defaults()
- Default values passed to RotMat*
-
online(<ODRF>)
- using new training data to update an existing
ODRF
.
-
online(<ODT>)
- using new training data to update an existing
ODT
.
-
plot(<Accuracy>)
- plot method for
Accuracy
objects
-
plot(<ODT>)
- to plot an oblique decision tree
-
plot(<VarImp>)
- Variable Importance Plot
-
plot(<prune.ODT>)
- to plot pruned oblique decision tree
-
plot_ODT_depth()
- plot oblique decision tree depth
-
predict(<ODRF>)
- predict based on an ODRF object
-
predict(<ODT>)
- making predict based on ODT objects
-
print(<ODRF>)
- print ODRF
-
print(<ODT>)
- print ODT result
-
prune(<ODRF>)
- Pruning of class
ODRF
.
-
prune(<ODT>)
- pruning of class
ODT