Draw the error graph of class ODT
at different depths.
Usage
plot_ODT_depth(
formula,
data = NULL,
newdata = NULL,
split = "gini",
NodeRotateFun = "RotMatPPO",
paramList = NULL,
digits = NULL,
main = NULL,
...
)
Arguments
- formula
Object of class
formula
with a response describing the model to fit. If this is a data frame, it is taken as the model frame. (seemodel.frame
)- data
Training data of class
data.frame
inODT
used to calculate the OOB error.- newdata
A data frame or matrix containing new data is used to calculate the test error. If it is missing, then it is replaced by
data
.- split
The criterion used for splitting the variable. 'gini': gini impurity index (classification, default), 'entropy': information gain (classification) or 'mse': mean square error (regression).
- NodeRotateFun
Name of the function of class
character
that implements a linear combination of predictors in the split node. including"RotMatPPO": projection pursuit optimization model (
PPO
), seeRotMatPPO
(default, model="PPR")."RotMatRF": single feature similar to Random Forest, see
RotMatRF
."RotMatRand": random rotation, see
RotMatRand
."RotMatMake": Users can define this function, for details see
RotMatMake
.
- paramList
List of parameters used by the functions
NodeRotateFun
. If left unchanged, default values will be used, for details seedefaults
.- digits
Integer indicating the number of decimal places (round) or significant digits (signif) to be used.
- main
main title
- ...
Arguments to be passed to methods.
Value
OOB error and test error of newdata
, misclassification rate (MR) for classification or mean square error (MSE) for regression.
Examples
data(body_fat)
set.seed(221212)
train <- sample(1:252, 100)
train_data <- data.frame(body_fat[train, ])
test_data <- data.frame(body_fat[-train, ])
plot_ODT_depth(Density ~ ., train_data, test_data, split = "mse")