Given the parameter list and the categorical map this function populates the values of the parameter list accoding to our 'best' known general use case parameters.
Arguments
- paramList
A list (possibly empty), to be populated with a set of default values to be passed to a
RotMat*function.- split
The criterion used for splitting the variable. 'gini': gini impurity index (classification, default), 'entropy': information gain (classification) or 'mse': mean square error (regression).
- dimX
An integer denoting the number of columns in the design matrix X.
- weights
A vector of length same as
datathat are positive weights.(default NULL)- catLabel
A category labels of class
listin predictors. (default NULL, for details see Examples ofODT)
Value
Default parameters of the RotMat* function.
dimXAn integer denoting the number of columns in the design matrix X.dimProjNumber of variables to be projected, defaultdimProj="Rand": random from 1 to ncol(X).numProjthe number of projection directions.(defaultceiling(sqrt(dimX)))catLabelA category labels of classlistin prediction variables, for details see Examples ofODRF.weightsA vector of length same asdatathat are positive weights.(default NULL)lambdaParameter of the Poisson distribution (default 1).sparsityA real number in \((0,1)\) that specifies the distribution of non-zero elements in the random matrix. Whensparsity="pois" means that non-zero elements are generated by the p(lambda) Poisson distribution.probA probability \(\in (0,1)\) used for sampling from.randDistParameter of the Poisson distribution (default 1).splitThe criterion used for splitting the variable. 'gini': gini impurity index (classification, default), 'entropy': information gain (classification) or 'mse': mean square error (regression).modelModel for projection pursuit. (seePPO)
Examples
set.seed(1)
paramList <- list(dimX = 8, numProj = 3, sparsity = 0.25, prob = 0.5)
(paramList <- defaults(paramList, split = "entropy"))
#> $dimX
#> [1] 8
#>
#> $numProj
#> [1] 3
#>
#> $sparsity
#> [1] 0.25
#>
#> $prob
#> [1] 0.5
#>
#> $dimProj
#> [1] "Rand"
#>
#> $lambda
#> [1] 1
#>
#> $randDist
#> [1] "Binary"
#>
#> $split
#> [1] "entropy"
#>
#> $model
#> [1] "PPR"
#>
