Given the parameter list and the categorical map this function populates the values of the parameter list accoding to our 'best' known general use case parameters.
Arguments
- paramList
A list (possibly empty), to be populated with a set of default values to be passed to a
RotMat*
function.- split
The criterion used for splitting the variable. 'gini': gini impurity index (classification, default), 'entropy': information gain (classification) or 'mse': mean square error (regression).
- dimX
An integer denoting the number of columns in the design matrix X.
- weights
A vector of length same as
data
that are positive weights.(default NULL)- catLabel
A category labels of class
list
in predictors. (default NULL, for details see Examples ofODT
)
Value
Default parameters of the RotMat* function.
dimX
An integer denoting the number of columns in the design matrix X.dimProj
Number of variables to be projected, defaultdimProj="Rand"
: random from 1 to ncol(X).numProj
the number of projection directions.(defaultceiling(sqrt(dimX))
)catLabel
A category labels of classlist
in prediction variables, for details see Examples ofODRF
.weights
A vector of length same asdata
that are positive weights.(default NULL)lambda
Parameter of the Poisson distribution (default 1).sparsity
A real number in \((0,1)\) that specifies the distribution of non-zero elements in the random matrix. Whensparsity
="pois" means that non-zero elements are generated by the p(lambda
) Poisson distribution.prob
A probability \(\in (0,1)\) used for sampling from.randDist
Parameter of the Poisson distribution (default 1).split
The criterion used for splitting the variable. 'gini': gini impurity index (classification, default), 'entropy': information gain (classification) or 'mse': mean square error (regression).model
Model for projection pursuit. (seePPO
)
Examples
set.seed(1)
paramList <- list(dimX = 8, numProj = 3, sparsity = 0.25, prob = 0.5)
(paramList <- defaults(paramList, split = "entropy"))
#> $dimX
#> [1] 8
#>
#> $numProj
#> [1] 3
#>
#> $sparsity
#> [1] 0.25
#>
#> $prob
#> [1] 0.5
#>
#> $dimProj
#> [1] "Rand"
#>
#> $lambda
#> [1] 1
#>
#> $randDist
#> [1] "Binary"
#>
#> $split
#> [1] "entropy"
#>
#> $model
#> [1] "PPR"
#>