Classification and regression implemented by the oblique decision random forest. ODRF usually produces more accurate predictions than RF, but needs longer computation time.
Usage
ODRF(X, ...)
# S3 method for class 'formula'
ODRF(
formula,
data = NULL,
split = "auto",
lambda = "log",
NodeRotateFun = "RotMatPPO",
FunDir = getwd(),
paramList = NULL,
ntrees = 100,
storeOOB = TRUE,
replacement = TRUE,
stratify = TRUE,
ratOOB = 1/3,
parallel = TRUE,
numCores = Inf,
MaxDepth = Inf,
numNode = Inf,
MinLeaf = 5,
subset = NULL,
weights = NULL,
na.action = na.fail,
catLabel = NULL,
Xcat = 0,
Xscale = "Min-max",
TreeRandRotate = FALSE,
...
)
# Default S3 method
ODRF(
X,
y,
split = "auto",
lambda = "log",
NodeRotateFun = "RotMatPPO",
FunDir = getwd(),
paramList = NULL,
ntrees = 100,
storeOOB = TRUE,
replacement = TRUE,
stratify = TRUE,
ratOOB = 1/3,
parallel = TRUE,
numCores = Inf,
MaxDepth = Inf,
numNode = Inf,
MinLeaf = 5,
subset = NULL,
weights = NULL,
na.action = na.fail,
catLabel = NULL,
Xcat = 0,
Xscale = "Min-max",
TreeRandRotate = FALSE,
...
)
Arguments
- X
An n by d numeric matrix (preferable) or data frame.
- ...
Optional parameters to be passed to the low level function.
- formula
Object of class
formula
with a response describing the model to fit. If this is a data frame, it is taken as the model frame. (seemodel.frame
)- data
Training data of class
data.frame
containing variables named in the formula. Ifdata
is missing it is obtained from the current environment byformula
.- split
The criterion used for splitting the nodes. "entropy": information gain and "gini": gini impurity index for classification; "mse": mean square error for regression; 'auto' (default): If the response in
data
ory
is a factor, "gini" is used, otherwise regression is assumed.- lambda
The argument of
split
is used to determine the penalty level of the partition criterion. Three options are provided including,lambda=0
: no penalty;lambda=2
: AIC penalty;lambda='log'
(Default): BIC penalty. In Addition, lambda can be any value from 0 to n (training set size).- NodeRotateFun
Name of the function of class
character
that implements a linear combination of predictors in the split node. including"RotMatPPO": projection pursuit optimization model (
PPO
), seeRotMatPPO
(default, model="PPR")."RotMatRF": single feature similar to Random Forest, see
RotMatRF
."RotMatRand": random rotation, see
RotMatRand
."RotMatMake": users can define this function, for details see
RotMatMake
.
- FunDir
The path to the
function
of the user-definedNodeRotateFun
(default current working directory).- paramList
List of parameters used by the functions
NodeRotateFun
. If left unchanged, default values will be used, for details seedefaults
.- ntrees
The number of trees in the forest (default 100).
- storeOOB
If TRUE then the samples omitted during the creation of a tree are stored as part of the tree (default TRUE).
- replacement
if TRUE then n samples are chosen, with replacement, from training data (default TRUE).
- stratify
If TRUE then class sample proportions are maintained during the random sampling. Ignored if replacement = FALSE (default TRUE).
- ratOOB
Ratio of 'out-of-bag' (default 1/3).
- parallel
Parallel computing or not (default TRUE).
- numCores
Number of cores to be used for parallel computing (default
Inf
).- MaxDepth
The maximum depth of the tree (default
Inf
).- numNode
Number of nodes that can be used by the tree (default
Inf
).- MinLeaf
Minimal node size (Default 5).
- subset
An index vector indicating which rows should be used. (NOTE: If given, this argument must be named.)
- weights
Vector of non-negative observational weights; fractional weights are allowed (default NULL).
- na.action
A function to specify the action to be taken if NAs are found. (NOTE: If given, this argument must be named.)
- catLabel
A category labels of class
list
in predictors. (default NULL, for details see Examples)- Xcat
A class
vector
is used to indicate which predictor is the categorical variable. The default Xcat=0 means that no special treatment is given to category variables. When Xcat=NULL, the predictor x that satisfies the condition "(length(table(x))<10) & (length(x)>20)
" is judged to be a category variable.- Xscale
Predictor standardization methods. " Min-max" (default), "Quantile", "No" denote Min-max transformation, Quantile transformation and No transformation respectively.
- TreeRandRotate
If or not to randomly rotate the training data before building the tree (default FALSE, see
RandRot
).- y
A response vector of length n.
Value
An object of class ODRF Containing a list components:
call
: The original call to ODRF.terms
: An object of classc("terms", "formula")
(seeterms.object
) summarizing the formula. Used by various methods, but typically not of direct relevance to users.split
,Levels
andNodeRotateFun
are important parameters for building the tree.predicted
: the predicted values of the training data based on out-of-bag samples.paramList
: Parameters in a named list to be used byNodeRotateFun
.oobErr
: 'out-of-bag' error for forest, misclassification rate (MR) for classification or mean square error (MSE) for regression.oobConfusionMat
: 'out-of-bag' confusion matrix for forest.structure
: Each tree structure used to build the forest.oobErr
: 'out-of-bag' error for tree, misclassification rate (MR) for classification or mean square error (MSE) for regression.oobIndex
: Which training data to use as 'out-of-bag'.oobPred
: Predicted value for 'out-of-bag'.others
: Same tree structure return value asODT
.
data
: The list of data related parameters used to build the forest.tree
: The list of tree related parameters used to build the tree.forest
: The list of forest related parameters used to build the forest.
References
Zhan, H., Liu, Y., & Xia, Y. (2022). Consistency of The Oblique Decision Tree and Its Random Forest. arXiv preprint arXiv:2211.12653.
Tomita, T. M., Browne, J., Shen, C., Chung, J., Patsolic, J. L., Falk, B., ... & Vogelstein, J. T. (2020). Sparse projection oblique randomer forests. Journal of machine learning research, 21(104).
Examples
# Classification with Oblique Decision Randome Forest.
data(seeds)
set.seed(221212)
train <- sample(1:209, 80)
train_data <- data.frame(seeds[train, ])
test_data <- data.frame(seeds[-train, ])
forest <- ODRF(varieties_of_wheat ~ ., train_data,
split = "entropy",parallel = FALSE, ntrees = 50
)
pred <- predict(forest, test_data[, -8])
# classification error
(mean(pred != test_data[, 8]))
#> [1] 0.03875969
# \donttest{
# Regression with Oblique Decision Randome Forest.
data(body_fat)
set.seed(221212)
train <- sample(1:252, 80)
train_data <- data.frame(body_fat[train, ])
test_data <- data.frame(body_fat[-train, ])
forest <- ODRF(Density ~ ., train_data,
split = "mse", parallel = FALSE,
NodeRotateFun = "RotMatPPO", paramList = list(model = "Log", dimProj = "Rand")
)
pred <- predict(forest, test_data[, -1])
# estimation error
mean((pred - test_data[, 1])^2)
#> [1] 5.840115e-05
# }
### Train ODRF on one-of-K encoded categorical data ###
# Note that the category variable must be placed at the beginning of the predictor X
# as in the following example.
set.seed(22)
Xcol1 <- sample(c("A", "B", "C"), 100, replace = TRUE)
Xcol2 <- sample(c("1", "2", "3", "4", "5"), 100, replace = TRUE)
Xcon <- matrix(rnorm(100 * 3), 100, 3)
X <- data.frame(Xcol1, Xcol2, Xcon)
Xcat <- c(1, 2)
catLabel <- NULL
y <- as.factor(sample(c(0, 1), 100, replace = TRUE))
# \donttest{
forest <- ODRF(y ~ X, split = "entropy", Xcat = NULL, parallel = FALSE)
#> Error in eval(formula[[3]]): object 'X' not found
# }
head(X)
#> Xcol1 Xcol2 X1 X2 X3
#> 1 B 5 -0.04178453 2.3962339 -0.01443979
#> 2 A 4 -1.66084623 -0.4397486 0.57251733
#> 3 B 2 -0.57973333 -0.2878683 1.24475578
#> 4 B 1 -0.82075051 1.3702900 0.01716528
#> 5 C 5 -0.76337897 -0.9620213 0.25846351
#> 6 A 5 -0.37720294 -0.1853976 1.04872159
#> Xcol1 Xcol2 X1 X2 X3
#> 1 B 5 -0.04178453 2.3962339 -0.01443979
#> 2 A 4 -1.66084623 -0.4397486 0.57251733
#> 3 B 2 -0.57973333 -0.2878683 1.24475578
#> 4 B 1 -0.82075051 1.3702900 0.01716528
#> 5 C 5 -0.76337897 -0.9620213 0.25846351
#> 6 A 5 -0.37720294 -0.1853976 1.04872159
# one-of-K encode each categorical feature and store in X1
numCat <- apply(X[, Xcat, drop = FALSE], 2, function(x) length(unique(x)))
# initialize training data matrix X1
X1 <- matrix(0, nrow = nrow(X), ncol = sum(numCat))
catLabel <- vector("list", length(Xcat))
names(catLabel) <- colnames(X)[Xcat]
col.idx <- 0L
# convert categorical feature to K dummy variables
for (j in seq_along(Xcat)) {
catMap <- (col.idx + 1):(col.idx + numCat[j])
catLabel[[j]] <- levels(as.factor(X[, Xcat[j]]))
X1[, catMap] <- (matrix(X[, Xcat[j]], nrow(X), numCat[j]) ==
matrix(catLabel[[j]], nrow(X), numCat[j], byrow = TRUE)) + 0
col.idx <- col.idx + numCat[j]
}
X <- cbind(X1, X[, -Xcat])
colnames(X) <- c(paste(rep(seq_along(numCat), numCat), unlist(catLabel),
sep = "."
), "X1", "X2", "X3")
# Print the result after processing of category variables.
head(X)
#> 1.A 1.B 1.C 2.1 2.2 2.3 2.4 2.5 X1 X2 X3
#> 1 0 1 0 0 0 0 0 1 -0.04178453 2.3962339 -0.01443979
#> 2 1 0 0 0 0 0 1 0 -1.66084623 -0.4397486 0.57251733
#> 3 0 1 0 0 1 0 0 0 -0.57973333 -0.2878683 1.24475578
#> 4 0 1 0 1 0 0 0 0 -0.82075051 1.3702900 0.01716528
#> 5 0 0 1 0 0 0 0 1 -0.76337897 -0.9620213 0.25846351
#> 6 1 0 0 0 0 0 0 1 -0.37720294 -0.1853976 1.04872159
#> 1.A 1.B 1.C 2.1 2.2 2.3 2.4 2.5 X1 X2 X3
#> 1 0 1 0 0 0 0 0 1 -0.04178453 2.3962339 -0.01443979
#> 2 1 0 0 0 0 0 1 0 -1.66084623 -0.4397486 0.57251733
#> 3 0 1 0 0 1 0 0 0 -0.57973333 -0.2878683 1.24475578
#> 4 0 1 0 1 0 0 0 0 -0.82075051 1.3702900 0.01716528
#> 5 0 0 1 0 0 0 0 1 -0.76337897 -0.9620213 0.25846351
#> 6 1 0 0 0 0 0 0 1 -0.37720294 -0.1853976 1.04872159
catLabel
#> $Xcol1
#> [1] "A" "B" "C"
#>
#> $Xcol2
#> [1] "1" "2" "3" "4" "5"
#>
#> $Xcol1
#> [1] "A" "B" "C"
#>
#> $Xcol2
#> [1] "1" "2" "3" "4" "5"
# \donttest{
forest <- ODRF(X, y,
split = "gini", Xcat = c(1, 2),
catLabel = catLabel, parallel = FALSE
)
# }