Skip to contents

Prune ODRF from bottom to top with test data based on prediction error.

Usage

# S3 method for class 'ODRF'
prune(obj, X, y, MaxDepth = 1, useOOB = TRUE, ...)

Arguments

obj

An object of class ODRF.

X

An n by d numeric matrix (preferable) or data frame is used to prune the object of class ODRF.

y

A response vector of length n.

MaxDepth

The maximum depth of the tree after pruning (Default 1).

useOOB

Whether to use OOB for pruning (Default TRUE). Note that when useOOB=TRUE, X and y must be the training data in ODRF.

...

Optional parameters to be passed to the low level function.

Value

An object of class ODRF and prune.ODRF.

  • ppForest The same result as ODRF.

  • pruneError Error of test data or OOB after each pruning in each tree, misclassification rate (MR) for classification or mean square error (MSE) for regression.

Examples

# Classification with Oblique Decision Random Forest
data(seeds)
set.seed(221212)
train <- sample(1:209, 80)
train_data <- data.frame(seeds[train, ])
test_data <- data.frame(seeds[-train, ])
forest <- ODRF(varieties_of_wheat ~ ., train_data,
  split = "entropy", parallel = FALSE, ntrees = 50
)
prune_forest <- prune(forest, train_data[, -8], train_data[, 8])
pred <- predict(prune_forest, test_data[, -8])
# classification error
(mean(pred != test_data[, 8]))
#> [1] 0.03875969
# \donttest{
# Regression with Oblique Decision Random Forest
data(body_fat)
set.seed(221212)
train <- sample(1:252,80)
train_data <- data.frame(body_fat[train, ])
test_data <- data.frame(body_fat[-train, ])
index <- seq(floor(nrow(train_data) / 2))
forest <- ODRF(Density ~ ., train_data[index, ], split = "mse", parallel = FALSE, ntrees = 50)
prune_forest <- prune(forest, train_data[-index, -1], train_data[-index, 1], useOOB = FALSE)
pred <- predict(prune_forest, test_data[, -1])
# estimation error
mean((pred - test_data[, 1])^2)
#> [1] 5.565047e-05
# }