Prune ODT
from bottom to top with validation data based on prediction error.
Usage
# S3 method for class 'ODT'
prune(obj, X, y, MaxDepth = 1, ...)
Value
An object of class ODT
and prune.ODT
.
ODT
The same result asODT
.pruneError
Error of validation data after each pruning, misclassification rate (MR) for classification or mean square error (MSE) for regression. The maximum value indicates the tree without pruning, and the minimum value (0) indicates indicates the data without splitting and using the average value as the predicted value.
Details
The leftmost value of the horizontal axis indicates the tree without pruning, while the rightmost value indicates the data without splitting and using the average value as the predicted value.
Examples
# Classification with Oblique Decision Tree
data(seeds)
set.seed(221212)
train <- sample(1:209, 100)
train_data <- data.frame(seeds[train, ])
test_data <- data.frame(seeds[-train, ])
index <- seq(floor(nrow(train_data) / 2))
tree <- ODT(varieties_of_wheat ~ ., train_data[index, ], split = "entropy")
prune_tree <- prune(tree, train_data[-index, -8], train_data[-index, 8])
pred <- predict(prune_tree, test_data[, -8])
# classification error
(mean(pred != test_data[, 8]))
#> [1] 0.4678899
# Regression with Oblique Decision Tree
data(body_fat)
set.seed(221212)
train <- sample(1:252, 100)
train_data <- data.frame(body_fat[train, ])
test_data <- data.frame(body_fat[-train, ])
index <- seq(floor(nrow(train_data) / 2))
tree <- ODT(Density ~ ., train_data[index, ], split = "mse")
prune_tree <- prune(tree, train_data[-index, -1], train_data[-index, 1])
pred <- predict(prune_tree, test_data[, -1])
# estimation error
mean((pred - test_data[, 1])^2)
#> [1] 7.613848e-05