Arguments
Value
A matrix of importance measure, first column is the predictors and second column is Increased error. Misclassification rate (MR) for classification or mean square error (MSE) for regression. The larger the increased error the more important the variable is.
Details
A note from randomForest
package, here are the definitions of the variable importance measures.
The first measure is the total decrease in node impurities from splitting on the variable, averaged over all trees. For classification, the node impurity is measured by the Gini index. For regression, it is measured by residual sum of squares.
The second measure is computed from permuting OOB data: For each tree, the prediction error on the out-of-bag portion of the data is recorded. Then the same is done after permuting each predictor variable. The difference between the two are then averaged over all trees.
Examples
data(body_fat)
y=body_fat[,1]
X=body_fat[,-1]
tree <- ODT(X, y, split = "mse")
(varimp <- VarImp(tree, type="impurity"))
#> $varImp
#> varible decrease_accuracy
#> BodyFat 1 5.985098e-03
#> Hip 8 1.388494e-05
#> Abdomen 7 8.268897e-06
#> Wrist 14 7.487498e-06
#> Height 4 7.191170e-06
#> Ankle 11 4.633147e-06
#> Biceps 12 3.746768e-06
#> Knee 10 1.684495e-06
#> Age 2 1.568993e-07
#> Neck 5 1.045500e-07
#> Thigh 9 8.405915e-08
#> Forearm 13 6.621724e-08
#> Chest 6 1.472028e-08
#> Weight 3 1.198327e-09
#>
#> $split
#> [1] "mse"
#>
#> attr(,"class")
#> [1] "VarImp"
forest <- ODRF(X, y, split = "mse", parallel = FALSE, ntrees=50)
(varimp <- VarImp(forest, type="impurity"))
#> $varImp
#> varible decrease_accuracy
#> BodyFat 1 3.536018e-03
#> Weight 3 3.454507e-05
#> Abdomen 7 1.430011e-05
#> Height 4 1.294990e-05
#> Thigh 9 9.089121e-06
#> Ankle 11 6.935579e-06
#> Hip 8 6.807814e-06
#> Chest 6 5.835472e-06
#> Neck 5 4.937802e-06
#> Wrist 14 3.528603e-06
#> Knee 10 1.820711e-06
#> Biceps 12 1.444451e-06
#> Forearm 13 8.782072e-07
#> Age 2 3.991877e-07
#>
#> $split
#> [1] "mse"
#>
#> attr(,"class")
#> [1] "VarImp"
(varimp <- VarImp(forest, X, y, type="permutation"))
#> $varImp
#> varible decrease_accuracy
#> BodyFat 1 6.895483e-04
#> Weight 3 3.540741e-06
#> Thigh 9 1.286703e-06
#> Hip 8 9.485006e-07
#> Ankle 11 7.919036e-07
#> Knee 10 6.297860e-07
#> Abdomen 7 5.934018e-07
#> Neck 5 5.512524e-07
#> Chest 6 5.354998e-07
#> Age 2 4.518536e-07
#> Forearm 13 1.970960e-07
#> Height 4 -2.007132e-07
#> Wrist 14 -3.065903e-07
#> Biceps 12 -4.805390e-07
#>
#> $split
#> [1] "mse"
#>
#> attr(,"class")
#> [1] "VarImp"